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I. Introduction 

The purpose of this work is to introduce new methods for the approxi- 
5 LC.L *.& 

mate solution of equations wich govern the propagation of linear periodic - 
waves through non-uniform media. Such phenomena occur in numerous 

branches of physics, e. g. see [l-51. In many cases the equations which 

govern the propagation of waves form a first order system of hyperbolic 

equations 

- . I  j=l 

for x E Q, the latter being the domain of interest. The sLimation lirnit 

n is the number of space dimensions that the solution vector 2 depends 

on, Aj and B are real valued coefficient matrices which may depend on 

- x (but not on t) and - f is a complex valued vector forcing function. 

If - 0 

forcing function, i.e. 

is assumed to be periodic in time with the same frequency as the 

then equation (1.1) reduces to the complex valued equation 

The existence of periodic solution of equation (1.1) for general 

and - f 

boundary condition imposed on 

A B 
j’ 

is not immediately obvious, and of course, also depends on the 

- 0. However, €or a large class of problems 



there is preponderant physical evidence that such solutions do exist. 

Furthermore this conclusion is also supported by some preliminary mathe- 

matical investigation [61, [ 7 1 .  

The coefficient matrices f o r  the governing system (1.3) and the 

attendant well posed boundary conditions may drastically vary in appear- 

ance from one problem to another. 

the system (1.3) may be reduced to a second order equation 

Indeed, in some very simple instances, 

(1.4) 

where P may be one component of p or some other variable, and where 

bi and c and the function F are in general ij ' the coefficients a 

complex valued. In this paper we will discuss numerical methods for the 

solution of systems of the type (1.3) and equations of the type (1.4)'. 

There are four separate problems that may be posed in conjunction 

with equations such as (1.3) and (1.4). The particular problem type is 

detefmined by the extent of the domain 52 and the nature of the boundary 

conditions imposed on I', the boundary of 52. We classify those problems 

for which the domain 52 

In general it will be required that only one boundary conditions be speci- 

fied on r. Of course, the form of the boundary condition may vary, 

usually in a piecewise manner, as one travels along I'. Typically, for 

the system (1.3) one component or a linear combination of some of the 

components of 2 is specified on r ,  i.e. 

is bounded in its extent as i n t e h i o t  p o b l e m b .  
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where the function g and the component of the vector p- are piece- 

wise "smooth" function of % E I'. 

the boundary conditions would typically look like 

For the second order equation (1.41, 

aP + - B-grad P = G(x> for 2 E r 

where the functions G and a and the components of the vector & are 

also piecewise l'smooth" functions of E l'. 

The coefficients of the system (1.3) or the second order equation 

(1.4) are in general functions of w. For a discrete set of values of w 

non-trivial solutions of equations (1.3) and (1.5) [or equations (1.4) 

and (1.6)] with = 0 and g = 0 [or F = 0 and G = 01 exist. Those 

values of w are called the eigenvalues of the homogeneous problem 

determined by the differential equation, the domain R, and the boundary 

. 

condition specified on r. The corresponding non-trivial solutions are 

called eigenfunctions. Then in general, if w is an eigenvalue of a 

specified homogeneous problem, the corresponding inhomogeneous problem 

may not have a solution, and even when it does, the solution will not be 

unique. This is, of course, the renowned Fredholm alternative [a]. There- 

fore, in specifying an interior problem, we .tacitly assume that  

an eigenvalue. On the other hand, given a domain R, a differential equation 

or system, and boundary conditions imposed on I', it is of practical interest 

to determine- those values of w, i.e. the eigenvalues, for which non-trivial 

solutions to the homogeneous problem exist. This type of problem is usually 

called an eigenvdue phoblem and is a second problem that may be posed for 

equation of t h e  type (1.3) or (1.4). 

w is not 

A third type of problem, namely eX.&~Oh phobia, are characterized 

by domains whose extent is infinite in every direction, i.e. R is exterior 

-3- 



to some bounded domain. 

bounded surface to which Q is exterior of, as well as at infinity. It 

is well known [9], [lo] that for the Helmholtz equation 

Here boundary conditions are imposed on the 

(1- 7) 2 A P  + k P = 0 ,  

unique solutions exist (for any k) only if P satisfies the radiation 

condition (in three-dimensions) 

ik P 1) = 0. 

where 1: is the distance from the origin of the coordinate systems. 

It is often the case that as 

may be combined, if not exactly, at least asymptotically, to yield the 

r + a, the system (1.3) or the equation (1.4) 

Helmholtz equation (1.7). Therefore the radiation condition (1.3) is again 

applicable, where for the system (1.3) the P derivative is replaced by 

an appropriate linear combination of the components of 2. 
The fourth type problem is one in which is finite in its extent 

These problems arise in the in some directions, and infinite in others. 

propagation of waves in oceans, layered media, wave guides, etc. 

of the numerical solution of such problems has been effected by Fix and 

Marin [ll] and will not be considered here. 

. 

A study 

The approximation solution of the linear wave problems described above 

have numerous inherent difficulties attached to them. Chief among these 

are the problem of resolution, of indefiniteness and, for the exterior 

problems, of infinite domains. 

The hesokhtiian p&ObLem can be described as follows: for a fixed domain 

R, as the forcing frequency increases One can expect an increase in the number 

-4- 



c - 

-. 

. 

. 

of waves present in n, waves which have to be adequately described by 

the approximate solution. 

expansions or via fast Fourier transform techniques, the adequate reso- 

lution of waves will require, at moderate values of w, the keeping of 

a prohibitive number of terms in the series. For the limited class of 

problems for which a free space Green's function, i.e. a fundamental 

solution of the differential equation, is known, the resolution problem 

can best be alleviated by transforming the given problem into an integral 

equation. This approach reduces the number of space dimensions by one, 

but is in general limited to problems with very simple mean flows. For 

finite difference or finite element discretizations, the resolution of 

waves can be accomplished only by choosing a fine enough grid. 

restriction on the grids is one quite apart from questions of accuracy 

as determined by truncation error analyses. 

For solutions in terms of eigenfunction 

This 

Standard finite difference, finite element or spectral discretiza- 

tions of (1.3) result in an indedivtite, nonsyuuuetric linear system of 

algebraic equations. Furthermore, even in the self-adjoint case, i.e. 

bi = 0, discretizations of (1.4) will also result in indedinite algebraic 

systems for large enough values of the forcing frequency w. Certainly, 

in the case of finite difference and finite element methods, the algebraic 

systems in question will in general be sparse in the sense that they are 

banded and that the non-z-ero entries in any row of the coefficient matrix 

(of the algebraic system) is in general a constant independent of the 

number of unknowns, i.e. the grid size. In view of the resolution problem 

it would be advantageous to solve the algebraic system resulting from 

discretization by an iterative method since these methods would require 

computer storage proportional to the number of unknowns (for the problems 

under consideration here). 

7 
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Unfortunately, the standard iterative methods, e.g. Gauss-Seidel, SOR, 

are not applicable to indefinite linear systems. Therefore; one is forced 

to use some form of Gauss elimination to solve the linear system. For ' the banded linear systems in question here, the storage requirements are 

roughly proportional, in two-dimensions, to N3l2, where N is the number 

of unknowns. 

In this work separate iterative techniques are described for solving 

systems of the type (1.3) and second order equations of the type (1.4). 

In the first case we circumvent the above problems by introducing a least 

squares discretization of the.system (1.3). The resulting algebraic system 

is then symmetric and positive definite, thus enabling the use of standard 

iterative methods such as Gauss-Seidel or SOR. This least squares-method 
t 

is discussed in section 3. For the second order equation (1.4), a standard 

Galerkidfinite element discretization is used, yielding perhaps an indefinite 

algebraic system. This system is solved in an iterative manner by using 

the multigrid technique of Nicolaides [12], [13], [14]. This technique is 

discussed in section 4. In both cases the overall methods are insensitive 

to the value of w insofar as their iterative character is concerned. 

For exterior problems the domain SZ is indinite in its extent. Once 

again, for those special problems for which a free space Green's function 

is known, the best approach to exterior problems is to convert them into 

integral equations, thus not only reducing the number of independent 

variables, but also rendering the lower dimensional domain finite [151. 

For more complicated problems one turns to finite element or finite difference 

discretizations. 

domain. 

finite one. 

solutions, such mappings would still result in the need of an infinite number 

Of course, one must now choose a finite computational 

One apparent way of doing SO is to map the infinite domain into a 

However, since the problems of interest here have wave-like 
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of g r id  po in t s  i n  o rde r  t o  resolve t h e  i n f i n i t e  number of waves compressed 

i n t o  the  f i n i t e  mapped domain. 

domain and then impose approximate r a d i a t i o n  condi t ions on the  boundary of 

t h i s  f i n i t e  domain. 

The a l t e r n a t i v e  is  t o  t runca te  t h e  i n f i n i t e  

This process is discussed b r i e f l y  i n  the  f i r s t  appendix. 

11. Model Problems 

To f i x  ideas  w e  w i l l  now present ,  i n  some d e t a i l ,  t h e  de r iva t ion  

of t he  governing equat ions f o r  the propagation of l i n e a r  per iodic  waves 

through a l o s s l e s s  f l u i d  which i s  i t s e l f  i n  s teady motion. For t h e  sake 

of s impl i c i ty  w e  w i l l  r e s t r i c t  ourselves t o  two space dimensions. Further- 

more, w e  w i l l  p resent  t y p i c a l  boundary condi t ions  f o r  an i n t e r i o r  problem. 

The s t a r t i n g  poin t  i n  our ana lys i s  is those equat ions which govern t h e  

genera l  motion of a l o s s l e s s  f l u i d ,  i . e .  the  Euler ian equation of motion 

p p-’ = constant  

where p,p and 1 are t h e  f l u i d  dens i ty ,  p ressure  and ve loc i ty ,  r e spec t ive ly ,  

, a n d  y is the  constant  r a t i o  of the  s p e c i f i c  hea ts .  The last  equat ion 

appearing i n  the  system (2.1) is due t o  assuming t h a t  t h e  f l u i d  i s  p e r f e c t  

and the  motion is i s o t r o p i c .  In  the  absence of any acous t i c  d i s turbance  

t h e  f l u i d  is assumed t o  be i n  steady motion. For such motion, w e  denote  

t h e  dependent v a r i a b l e s  wi th  a zero subsc r ip t ;  
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... 

The first central assumption of linear acoustics is that the acoustic 

disturbance in a small perturbation of the undisturbed steady flow, i.e. 

with 

where the prime superscript denotes the acoustic variable. 

hold for the other dependent variables. Substitution of equation (2.2) and 

the analogous expressions for p and 2 yields, upon neglecting terms that 

are quadratic in the acoustic variables, the system (1.1) with 

Similar relations 

n = 2, 

x1 = x, x2 = y, f = 0, 

0 0 ypo U 

Al=(l;o ;o uO O) 

where u and v are the components of u in the x and y direction, 

respectively. Since &vanishes, it is assumed that the acoustic perturba- 

tion is caused by periodic boundary disturbances. 

Will in general be linear and whenever they are not homogeneous, the inhomo- 

geneity will be a periodic function of time, i.e. proportional to exp(iwt). 

The boundary conditions 

The second central assumption of acoustics is that the solution of the 

initial value problem with its attendant periodic boundary conditions Will 
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r e s u l t ,  perhaps a f t e r  some t i m e  or i n  an asymptotic manner, i n  a 

p e r i o d i c  so lu t ion  ( i n  t i m e )  wi th  the same frequency 

term. This assumption enables us t o  s u b s t i t u t e  equat ion (1.2) i n t o  t h e  

system (l.l), y ie ld ing  t h e  system (1.3) as the  governing system f o r  our  

duct  acous t i c s  problem. 

w as the fo rc ing  

We denote t h e  components of by t h e  r e l a t i o n  

P =  (%, - 
I f  t he  f l u i d  is i n  uniform motion i n  t h e  x-direct ion,  i .e.  

po and p constant ,  t h e  system f o r  P ,  U ,  and V 0 uo = ua, vo = 0, 

s i m p l i f i e s  t o  

iwP + uooPx + yp [U +v 1 = 0 
O X Y  

po(iwU + uooUx) + Px = 0 

P 0 ( i , W V  + UmV,) + P Y = 0 

which may be combined i n t o  t h e  second o rde r  equat ion (1.4) with 

2 2 
= (l-M ), a12 = a21 = 0,  aZ2 = 1, bl = -2ikM, b2 = 0 and c = k , all 

where M = ua/ao, k2 = w 2 / a i  = constant and a i  = ypo/po i s  the  square 

of t he  speed of sound of t he  undisturbed f l u i d .  O f  course,  i f  u, = 0,  

t h e  system (2.6) reduces t o  t h e  Helmholtz equation (1.7).  There are o the r  

s i t u a t i o n s  i n  which the  system (1.3) f o r  A can be combined i n t o  a s i n g l e  

equat ion f o r  e i t h e r  P 

e.g. see [3].  However, i n  general  s e t t i n g s ,  the  system (1.3) governing 

o r  possibly f o r  a ve loc i ty  p o t e n t i a l  func t ion ,  

cannot be combined i n t o  a s ingle  equation. . 
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I f  t he  mean flow is everywhere subsonic ,  t h e  system (1.3) with 

c o e f f i c i e n t s  given by equat ion (2.4) is  of e l l i p t i c  type,  as- is  t h e  

second order  equat ion (1.4). 

one boundary condi t ion  everywhere on t h e  boundary of t he  domain 

In e i t h e r  case we are requi red  t o  spec i fy  

. 
For an i n t e r i o r  problem t h i s  boundary condi t ion  would t ake  the  form 

of equation (1.5) or equat ion (1.6). 

t i o n s ,  t h e  boundary condi t ions  t ake  t h e  s p e c i f i c  form 

I n  p a r t i c u l a r ,  i n  many appl ica-  

and 

o r  

P = g(x> f o r  E rl (2.7) 

. 

where rlu, r2 = I', t h e  boundary of R ,  t h e  complex func t ion  g r ep resen t s  

a p res su re  dis turbance en te r ing  s2 through rl, t h e  complex func t ion  z 

is the  (possibly va r i ab le )  impedence of t h e  boundary r2 ,  and 5 i s  t h e  

u n i t  normal t o  r2. 
are used with the  system (1.3) while  t h e  combination of equat ions (2.7) an 

(2.9) are used with equat ion (1.4) o r  (1.7). 

The combination of boundary condi t ions  (2.7) and (2.8) 

111. The Least Squares F i n i t e  Element Method 

In  t h i s  s ec t ion  w e  present  a formal d e s c r i p t i o n  of t h e  least  squares 

I n  order  method f o r  t h e  approximate s o l u t i o n  of ystems of t h e  type (1.3) 

t o  s implify our  d iscuss ion ,  let  u s  formally write t h e  system (1.3) as 

and t h e  boundary condi t ions  as 

-10- 



B & =  g on I'. 

Here L is a f i r s t  o rder  l i n e a r  d i f f e r e n t i a l  ope ra to r ,  and B is a 

1 X m matr ix ,  m being t h e  dimension of 4, i .e .  t h e  number of unknowns. 

The least squares  scheme i s  simply t o  minimize t h e  func t iona l  

over a f i n i t e  dimensional space Sh of vec tor  valued funct ions.  The 

weight u i n  essence "balances" the  i n t e r i o r  and boundary i n t e g r a l s ,  and I 

is e s s e n t i a l  f o r  achieving t h e  best  poss ib l e  accuracy [16]. Furthermore, 

u w i l l  depend on t h e  dimension of S . A mathematical ana lys i s  of t h i s  

scheme can be found i n  Fix,  e t  al .  1171,  [ M I .  

h 

Although f i n i t e  element spaces using polynomials of any order  could 

be  used, t o  f i x  ideas  w e  s h a l l  r e s t r i c t  our a t t e n t i o n  t o  l i n e a r  elements.  

W e  let  h parametr ize  t h e  subdivis ion of s1 i n t o  subregions,  e.g. l e t  

h be t h e  maximum l i n e a r  dimension of any subregion. Then a r b i t r a r y  sub- 

d i v i s i o n  of t h e  reg ion  s1 w i l l  not r e s u l t  i n  optimal accura te  approxima- 

t i ons .  (Here by optimal accuracy is  meant t h e  h ighes t  poss ib l e  power of 

h obta inable  f o r  t h e  e r r o r  i n  approximating t h e  s o l u t i o n  by elements i n  

S .) It w a s  shown by Fix,  et a l .  [18] t h a t  l i n e a r  elements i n  d i r e c t i o n a l  

t r i a n g l e s  (see Figure l a )  and b i l i n e a r  elements i n  q u a d r i l a t e r a l s  ( see  

Figure l b )  do not  r e s u l t  i n  optimally accura te  approximations. On t h e  

o the r  hand l i n e a r  elements i n  the "cr iss-cross"  g r i d  of Figure IC do y i e l d  

opt imal ly  accura te  approximations. 

t h e  pred ic ted  accuracy is O(h ) f o r  each of t h e  components of A. There- 

f o r e  w e  assume t h a t  s1 

then; by drawing d iagonals ,  each q u a d r i l a t e r a l  can be divided i n t o  four  

h 

Indeed, u s ing  t h e  "criss-cross" g r i d ,  

2 

can be  divided i n t o  q u a d r i l a t e r a l  subregions and 
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I :i t r i a n g l e s .  This cons t ruc t ion  y i e l d s  a "cr iss-cross"  type  g r i d .  (We do 

not  e n t e r t a i n  here  t h e  w e l l  documented [19],  [20] methods of t r e a t i n g  

curved boundaries. ) 

To continue our d e s c r i p t i o n  of the  method, we  f i r s t  l e t  zi = (xi,yi) 

denote t h e  nodes as shown i n  Figure IC. 

funct ion $Ji which i s  one at zi and zero at a l l  o the r  nodes. We w r i t e  

For each node w e  have a shape 

h 

M 

i= 1 

where M i s  the  number of nodes and is  t h e  vec tor  of nodal va lues  of 

the  approximation. We s u b s t i t u t e  equation (3.2) f o r  & i n  t h e  func t iona l  

(3.1) and then minimize over t h e  space S . In  t h i s  i n s t ance  Sh has  f o r  

a b a s i s  t h e  set 

h 

where gj i s  t h e  j - th  u n i t  vec tor  of dimension m. 

The above procedure produces t h e  a lgeb ra i c  system 

(3.3) 
h 

cLtLi-5 

Any d e t a i l s  concerning the  formation of t h e  system (3.3) which have been 

omitted i n  t h e  above desc r ip t ion  are common t o  a l l  f i n i t e  element methods, 

and f o r  them t h e  reader  is r e f e r r e d  t o  any of t h e  many f i n i t e  element methods 

t e x t s  now ava i lab le ,  e.g. [19] or [20]. The one except ion is t h a t  t h e  weight 

U appearing i n  the  func t iona l  (3.1) should equal  C/h, C a constant  1161. 

The matrix C is  an N x N symmetric, p o s i t i v e  d e f i n i t e ,  banded matrix. 

I n  add i t ion ,  t h e  number of non-zero e n t r i e s  i n  any row is  independent of h.  

F1 
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r .  

. 

I f ,  f o r  ins tance ,  Q is t h e  u n i t  square and i f  t h e r e  are n nodes along 

any given row [so t h a t  t h e  mesh spacing h i s  O(l/n)], then'  t h e  number 

of unknowns i s  

N = mn2 + a(n> 

and t h e  ha l f  bandwidth is  mn + O(1). 

The h ighly  d e s i r a b l e  matrix proper t ies  of symmetry, p o s i t i v e  d e f i n i t e n e s s  

and s p a r s i t y  are of course a c ruc ia l  aspec t  of t he  least  squares  approach 

and t h e  key t o  t h e  method's i n s e n s i t i v i t y  t o  t h e  value of Inso fa r  as 

t h e  a p p l i c a b i l i t y  of i t e r a t i v e  methods such as Gauss-Seidel o r  SOR f o r  t h e  

s o l u t i o n  of t h e  system (3 .3)  is concerned, the  f i r s t  two p r o p e r t i e s  are 

necessary.  The t h i r d  property,  of course,  makes t h e  use of i t e r a t i v e  methods 

d e s i r a b l e ,  e spec ia l ly  in  view of the  r e s o l u t i o n  problem discussed i n  sec t ion  

1. 

o r  f i n i t e  d i f f e rence  approximation t o  t h e  system (1.3). 

approaches would y i e l d  a system 

w. 

Furthermore these  p rope r t i e s  would not  be obtained i f  one used a Galerkin 

Indeed, both these  

where D is an i n d e f i n i t e  mat r ix  of roughly t h e  same s i z e  and t y p i c a l l y  

t h e  same s t r u c t u r e  as C. 

NumetLicae Exampkb  

The f i r s t  example problem i s  one whose exact  s o l u t i o n  is known and is  

presented i n  order  t o  i l l u s t r a t e  t h e  accuracy of t h e  least squares  method. 

S p e c i f i c i a l l y ,  we consider  i h e  s y s t e m  (2.6) with uoD = 0. By in t roducing  

t h e  nondimensionalizations 

F - P/P0ao 2 Q = U / a o  and = V/ao 
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w e  then have t h a t  

6 + O  + i k $ = O  

Cx + i k Q  = 0 

cy + i k O  = 0 

X Y  

where aga in  k = w/ao. It i s  clear t h a t  p and the re fo re  u and v 

s a t i s f y  t h e  Helmholtz equat ion 
\ 

A $  + k2$ = 0 

(3.6) 

(3.7) 

I n  the  numerical experiments w e  t ake  0 t o  be the  u n i t  box {O<x<l,O<y<l) 

and use  f o r  boundary condi t ions  the  r e l a t i o n s  

With these  boundary condi t ions  t h e  exact  s o l u t i o n  of t h e  system (3.6) is 

given by 

and 

$(x,y) = cos(7ry)cos[~(l-x)  l/cosF.l ' i f  k2 > IT' 

ik 2 2  
where p = Ik -n I . The exac t  s o l u t i o n  f o r  G and G can e a s i l y  be der ived 

from these  formulas and t h e  system ( 3 . 6 ) .  

func t iona l  (3.1) t o  be minimized is  given by 

F i n a l l y ,  f o r  t h i s  problem, the  

-14- 
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Ah Ah ,h We denote  by p , u and v the  approximate least squares  s o l u t i o n  

of t h e  system (3 .6)  and t h e  boundary condi t ions  ( 3 . 8 ) .  The L2 e r r o r  of t h e  

approximation t o  $ is  def ined t o  be 

Analogous expression hold f o r  e,, and ev. W e  a l s o  d e f i n e  t h e  e r r o r  

which is t h e  maximum absolu te  e r ro r  a t  t h e  nodes. Figures  2 and 3 d i s p l a y  

t h e  L2 e r r o r s  i n  t h e  least squares approximation t o  u, v and p as 

func t ions  of h f o r  t h e  problemdefined by equat ion (3 .6 )  and ( 3 . 8 ) .  Also 

as a fEnction of h. These e r r o r s  w e r e  
EP shown i n  t h e s e  two f i g u r e s  i s  

computed f o r  approximation based on t h e  l i n e a r  "cr iss-cross"  t r i a n g l e s  

descr ibed earlier i n  t h i s  sect ion.  Figure 2 i s  f o r  k = w/ao  = 1 and 

Figure 3 is f o r  k = 7/4. Note t h a t  t h e  second va lue  of k i s  g r e a t e r  than 

T / 2 .  so t h a t  f o r  t h a t  k t h e  Helmholtz equat ion ( 3 . 7 )  , with  the boundary 

condi t ions  ( 3 . 8 ) ,  i s  i n d e f i n i t e .  As is evident  from the  f i g u r e s ,  a l l  e r r o r s  

are O(h2) as w a s  p red ic ted  by the theory of Fix,  e t  a l .  [17]. The r e s u l t s  

. 
of Figures  2 and 3 are representa t ive  of numerous computations involving t h e  

system (3 .6 )  along wi th  many d i f f e r e n t  sets of boundary condi t ions.  

O(h 

The 

2 
behavior of t h e  e r r o r s  was confirmed i n  every ins tance .  

-15- 
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Our second example i l l u s t r a t e s  t h e  v e r s a t i l i t y  of t h e  least  squares  

The problem considered i s  of t h e  type d iscussed  i n  f i n i t e  element method. 

s e c t i o n  2. The mean flow is  assumed und i rec t iona l  and of cons tan t  p re s su re .  

Af t e r  appropr ia te  nondimensionalizations w e  are cons ider ing  t h e  system (1.3) 

w i th  

In our s p e c i f i c  example, w e  w i l l  t ake  f o r  l.l t h e  parabol ic  p r o f i l e  

2 
l.l = 2 e - y  1 

Although the system (1.3) wi th  t h e  above va lues  f o r  A1, A2 and B looks  

r a t h e r  simple i t  cannot be combined i n t o  a s i n g l e  second order  equat ion  

f o r  t h e  pressure. Furthermore, an exac t  s o l u t i o n  cannot be produced. 

Once aga in  the  region of interest  w i l l  be  t h e  u n i t  square  and t h e  boundary 

condi t ions  a re  given by 

p(0,y) = 1 and u(1,y) - p(1,y) = 0 f o r  0 < y < 1 

and 

V(x,O) + p(x,O) = 0 and v ( x , l )  - p ( x , l )  = 0 f o r  0 < x < 1 . 

Figure 4 disp lays  contour p l o t s  f o r  approximations t o  t h e  real  and 

imaginary part  of u ,  v ,  and p .  The c a l c u l a t i o n s ' w e r e  made f o r  

k = w/co = 7/4. 

-16- 
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* 

This  concludes our presenta t ion  of t h e  least squares  f i n i t e  element 

method f o r  t h e  approximate so lu t ion  of systems of t h e  type  0 . 3 ) .  

summary, t he  p r i n c i p a l  v i r t u e s  of t h e  method are t h a t  i t  produces a 

symmetric, p o s i t i v e  d e f i n i t e  and sparse a lgeb ra i c  system f o r  any va lue  of 

t h e  forc ing  frequency. It is appl icable  t o  genera l  v a r i a b l e  c o e f f i c i e n t  

I n  

problems. I n  conjunct ion with the "cr iss-cross"  t r i a n g l e s  of Figure IC 

t h e  method y i e l d s  t h e  bes t  posss ib le  accuracy obta inable  by elements of 

t h e  approximating space. A f i n a l  v i r t u e  not  previously pointed out  i s  

t h a t  t h e  t reatment  of boundary condi t ions v i a  a boundary i n t e g r a l  i n  t h e  

func t iona l  (3.1) enables  one t o  e a s i l y  implement complicated boundary 

condi t ions  inc luding  those of t h e  mixed type  such as  equat ion (2.8). 

I V .  The F i n i t e  Element Mult igr id  Method 

In t h i s  s ec t ion  we desc r ibe  t h e  f i n i t e  element mul t ig r id  method f o r  

second order  equat ion of t h e  type  (1.4). 

problems f o r  which equat ion (1.4) is e l l i p t i c ,  i .e .  t h e  matrix 

i s  p o s i t i v e  d e f i n i t e .  

t i z a t i o n ,  but  is  a method of e f f i c i e n t l y  so lv ing  t h e  a lgeb ra i c  system 

r e s u l t i n g  from a given d i s c r e t i z a t i o n .  

methods, Nicolaides  [12] ,  [13] ,  [14] has ex tens ive ly  analyzed t h e  mult i -  

g r i d  method. H i s  t h e o r e t i c a l  and computational r e s u l t s  apply t o  genera l  

real se l f -ad jo in t  e l l i p t i c  equations,  inc luding  i n d e f i n i t e  ones such as 

t h e  Helmholtz equation. 

method t h e  a lgeb ra i c  system r e s u l t i n g  from a f i n i t e  element d i s c r e t i z a t i o n  

of an e l l i p t i c  equat ion may be solved f o r  w i th in  t h e  d i s c r e t i z a t i o n  e r r o r  

i n  O(N) opera t ions ,  where N is t h e  number of unknowns. In  t h i s  work 

w e  apply t h e  f i n i t e  element mult igr id  method t o  non-self a d j o i n t  second 

o rde r  e l l i p t i c  equat ions with complex valued c o e f f i c i e n t s .  

We consider  here  only those 

(ai j )  

The mult igr id  method i s  not  a method of d i scre-  

I n  conjunct ion wi th  f i n i t e  element 

The bas ic  r e s u l t  is t h a t  by use  of t he  mul t ig r id  

Our p re sen ta t ion  

-17- 



w i l l  be  b r i e f ,  and t h e  reader  is  r e f e r r e d  t o  t h e  work of Nicolaides  

for any d e t a i l s  which are no t  unique t o  t h e  equat ions consid'ered here .  

I n  order  t o  d i s c r e t i z e  equat ion (1.4) ,  w e  s tar t  wi th  a weak formu- 

l a t i o n  of t h a t  equation and boundary condi t ions .  To t h i s  end w e  l e t  

rl denote t h a t  p a r t  of t he  boundary I' of t h e  region $2 on which 

D i r i c h l e t  data  is prescr ibed ,  i .e. equat ion (1.6) wi th  fi = 0, and 

r2 denote t h a t  p a r t  of I' on which Neumann or mixed d a t a  i s  pre- 

sc r ibed ,  i . e .  equat ion (1.6) wi th  f 0. Then t h e  weak form of 

equat ion (1.4) is given by [19]:  

Find a P E $(Q) such t h a t  

1 r f o r  a l l  $ E Ho($2). Here H (Q) denotes the  Sobolev space of order  r ,  

t h e  spaces  H i ( Q )  and +(Q) are re spec t ive ly  def ined by 

and 

0 W e  assume t h a t  F E H ($2) and ( 0 ) "  denotes  t h e  complex conjugate.  W e  

have a l s o  assumed t h a t  on 
I 

r2 t h e  boundary condi t ion  (1.6) is  of t h e  usua l  

f l u x  type,  i . e .  

n 

B j  = aijni 

i= 1 

-18- 



where n is  a component of the outer  normal t o  r. Other boundary 

condi t ions  can a l s o  be handled by making appropr ia te  changes i n  the  

weak form (4.1) [191. 

i 

h To f ind  an approximate so lu t ion  we  f i r s t  seek a P E P such t h a t  

h equat ion (4.1) holds f o r  a l l  JI € , Y  where P and Y are f i n i t e  

dimensional subspaces of €I: and H 

t h e s e  subspaces and t h e i r  bases  i s  accomplished i n  the  s tandard manner 

[19] and w i l l  not  be discussed here. I n  genera l  P and Y w i l l  be  

i d e n t i c a l  except f o r  boundary terms. Once t h e  choices  o f  P and Y 

and t h e i r  bases  are made, t h e r e  r e s u l t s  t h e  mat r ix  problem 

I 

1 
0' r e spec t ive ly .  The choice of 

where the  components of are t h e  c o e f f i c i e n t s  i n  the  r ep resen ta t ion  

of P i n  terms of t h e  chosen bas is  f o r  P. The matr ix  K w i l l  i n  general  

2 
h 

be complex valued, non-Hermitian and i n d e f i n i t e  ( i n  the  sense t h a t  

p l u s  i t s  conjugate t ranspose is i n d e f i n i t e ) .  

K 

The implementation of t he  mult igr id  method f o r  t he  s o l u t i o n  of equat ion 

(4.2) exac t ly  follows t h a t  described by Nicola ides  [12], [13] ,  [14] f o r  

real s e l f  a d j o i n t  i n d e f i n i t e  problems, and t h e r e f o r e  w i l l  no t  be discussed 

here .  However, w e  do poin t  ou t  the c r u c i a l  f e a t u r e  of t h a t  implementation 

which is respons ib le  f o r  t h e  method ' s  convergence f o r  non-self ad jo in t  

i n d e f i n i t e  problems. 

problem i s  solved by a d i r e c t  method, i .e. Gauss e l iminat ion.  I n  gene ra l  

t h i s  coarse  g r i d  problem i s  small compared t o  t h e  problem (4.2) and a 

d i r e c t  so lu t ion  does no t  i ncu r  an apprec iab le  pena l ty  i n s o f a r  as computer 

This f ea tu re  is  t h a t  on the  coarses t  g r i d ,  t h e  a lgeb ra i c  

. 
t i m e  o r  s to rage  is  concerned. As pointed out  by Nicoiaides ,  some c a r e  must 

. b e  exercised i n  choosing t h e  coarses t  g r id  s i n c e  too  coarse a g r id  w i l l  

r e s u l t  i n  divergent  iterates. In p r a c t i c e ,  t h i s  divergence can be monitored 

I . -19- 
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. 

by examining successive i terates,  and i f  de tec ted  can be cor rec ted  by 

choosing a f iner  coa r ses t  g r id .  Since a d i r e c t  method is  used on t h e  

coa r ses t  gr id ,  t h e  mul t ig r id  method is  no t  a pure i terat ive method. 

However, insofar  as t h e  advantages usua l ly  ascr ibed  t o  i t e r a t i v e  methods 

are concerned, e.g. low computer s to rage ,  t h e  mul t igr id  method c e r t a i n l y  

s u f f e r s  l i t t l e  compared t o  t h e  Gauss-Seidel o r  SOR methods. Furthermore 

t h e  mult igr id  method r equ i r e s  O(N)  opera t ions  t o  s a t i s f a c t o r i l y  so lve  

( 4 . 2 )  and i n  practice i s  found t o  converge much f a s t e r  than o ther  i t e r a t i v e  

methods (when these  converge). The O ( N )  opera t ion  count remains v a l i d  

f o r  i n d e f i n i t e  non-self ad jo in t  problems. 

It is possible  t o  use  t h e  Gauss-Seidel o r  SOR methods t o  so ive  f o r  5 

i f  one uses  t h e  r e l a t i o n  

. 

K*K 5 = K * A  ( 4 . 3 )  

where K* is t h e  conjugate  t ranspose of K. However, t h e  mat r ix  K*K 

corresponds t o  a f o u r t h  o rde r  d i f f e r e n t i a l  opera tor  and t h e  convergence 

of standard i t e r a t i v e  methods f o r  t h e  s o l u t i o n  of equat ion ( 4 . 3 )  i s  

notor ious ly  slow. 

Many computational experiments have been c a r r i e d  out f o r  equat ions 

of t he  type (1.4) sub jec t  t o  boundary condi t ions  of t he  type (1.6). Details  

of the  results of t hese  computations can be found i n  Thomas [211. Here, i n  

Tables 1 and 2 ,  w e  present  a few of these  r e s u l t s .  

con ta ins  information concerning the  computational so lu t ion  of the  fol lowing 

pro b 1 em : 

S p e c i f i c a l l y ,  Table 1 



+ P  + C P = O  
p= YY 

P(0,Y) = 0 

. 
ITX 

P ( 0 , ~ )  + BP(0,x) = Bsin  (-1 Y 2 

. 

TTX P (1,x) + BP(1,x) = sin(,) [Bcosa - 0  s i n a l  
Y 

whose exact s o l u t i o n  is 

7T P(x,y) = s in (Tx  ) cos(ay) .  

2 3  Here a = [ c - ( ~ / 2 )  ] . The parameters c and 

t h e  parameters appearing i n  t h e  descr ip t ion  of t he  

f o r  

f o r  

f o r  

, ( 4 . 4 )  

( 4 . 5 )  

given i n  t h e  t a b l e  r e f e r  t o  

problem. The parameter 

Mo and M1 r e f e r  t o  t h e  number of i n t e r v a l s  i n  each coordinate  d i r e c t i o n  

f o r  the  coarses t  and f i n e s t  g r id s ,  respec t ive ly ,  used i n  the  computation. 

F i n a l l y ,  t h e  last  column i n  t h e  tab le  g ives  the  computed "e f f ec t ive  s p e c t r a l  

radius"  (ESR) f o r  an average mult igr id  cyc le ,  where ESR i s  def ined by 

L e r r o r  a f t e r  j mul t igr id  cyc le s  

ESR = (  I n i t i a l  L2 e r r o r  

The computations displayed were performed using j = 5, although v a r i a t i o n s  

i n  j do not  appreciably a f f e c t  the r e s u l t s .  

Lines (i) and ( i i )  of Table 1 i l l u s t r a t e  t h e  r e s u l t  t h a t  t he  con- 

vergence rate of t h e  mul t ig r id  method is  unaffected by t h e  s i z e  of t h e  

f i n e s t  g r i d ,  i .e. t he  number of unknowns N. Lines (iii) - (v) are indica-  

t ive  of t he  divergence of the  method f o r  not f i n e  enough coarse g r i d s .  

divergence is  l a rge ly  unaffected by t h e  s i z e  of t h e  f i n e s t  g r id ,  as can be 

This 
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seen by examining l i n e s  ( i i i )  and ( i v ) .  However, i f Y h e  coarses t  g r i d  is  

r e f ined  as i n  l i n e  (v) ,  convergence i s  a t t a i n e d .  F ina l ly ,  the t a b l e  ind i -  

cates t h a t  the ESR is bounded away from un i ty ,  i .e .  is  not  

p > 0. This r e s u l t ,  toge ther  wi th  the  independence of t h e  ESR from N ,  

is t h e  cause of t h e  convergence of t he  method i n  

l-N-', where 

O(N) operat ion.  

Table 2 conta ins  information concerning the  computational s o l u t i o n  

of t h e  following non-self-adjoint problem: 

+ P  + P x + P  + c P  
pxx YY Y 

IT 
-cos 2 

ITX 
2 - cos(ay) - a s i n  ITX 

2 
- 

sin(?) 

cos (a) sin(?) 

f o r  O < y < l  - -  

f o r  0 i ' x  5 1 

( 4 . 6 )  

whose exact s o l u t i o n  is  aga in  equation (4.5). The t a b l e  again i n d i c a t e s  t h a t  

. t he  ESR is  bounded away from uni ty .  Furthermore, i t  ind ica t e s  t h a t  some 

improvement can be gained by making the  coa r ses t  g r i d  coarser .  

W e  close by not ing  t h a t  some ideas  concerning mul t igr id  methods f o r  

. f i n i t e  d i f fe rence  d i s c r e t i z a t i o n  of i n d e f i n i t e  problems have been advanced 

by Brandt 1221. 
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APPENDIX I: Remarks Concering Radiat ion Conditions 

In  t h i s  appendix we  c o l l e c t  some remarks concerning r a d i a t i o n  

condi t ions f o r  e x t e r i o r  problems. W e  assume a f a m i l i a r i t y  with t h e  

. theory of r a d i a t i o n  condi t ions fo r  t h e  Helmholtz equat ion (1 .7) .  

Ptroblemb Lltith Flow at 7n6iM.irty 

We consider  problems f o r  which a t  l a r g e  d i s t ances  ( i n  a l l  d i r e c t i o n s )  

from t h e  o r i g i n ,  t h e  f l u i d  media is i n  a state of uniform flow. 

ins tance ,  consider  t h e  s c a t t e r i n g  of sound by a body moving with uniform 

subsonic v e l o c i t y  through a f l u i d .  Then, r e l a t i v e  t o  an observer f i x e d  

wi th  the  body, t h e  f l u i d  a t  i n f i n i t y  moves with a uniform ve loc i ty .  I n  

genera l  t he  propagat ionof  sound w i l l  be governed by the  system (1.3) wi th  

c o e f f i c i e n t  given by equation ( 2 . 4 ) .  However, i n  t h e  f a r  f i e l d ,  t h i s  

system can be approximated by the system (2.6) i f  we  a l i g n  the  x-axis 

For 

wi th  the  d i r e c t i o n  of the  flow at  i n f i n i t y .  A s  w a s  noted previously,  t he  

system (2.6) may be combined i n t o  the  s i n g l e  second order  equation 

AP - MAPxx - 2ikMPx + k L P  = 0 

where A is  the  Laplacian operator.  The t ransformation 

2 2 *  P = Uexp(ikMx/(l-M ) )  and 6 = x/(l-M ) 

reduce (Al.1) t o  t h e  Helmholtz equation 

8 

A2 h a + k a = O  5 
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(Al. 1) 

(Al. 2)  

(Al. 3) 



where AE is the Laplacian operator in (5,~) coordinates and 

k = k/(l-M 1 . h 2fr For three dimensional problems the same construction is 

possible, resulting in equation (Al. 3) with 

operator in (E,y, z )  

radiation conditions is given by [91  

AE representing the Laplacian 

coordinate. For equation (Al. 3) the appropriate 

n-1 
(Al. 4) 

2 2fr 2 2 2 f r  
where n is the number of space dimensions and n = ( 5  +y [ ( E  +y +z ) 1 

in two [three] dimensions. Substitution of the transformation (A1.2) and 

(A1.4) y ie lds  for n = 3 

(Al. 5) 

4 2 2 2  where r = (x +y +z ) . Equation (A1.5) is then the appropriate radiation 

condition f o r  equation (Al.l) in three dimensions. The analogous two 

dimensional formula may be derived in a similar manner. 

In computations the radiation condition (A1.5) [o r  A1.41 may be 

imposed by evaluating the limit at a finite radius, o r  more generally, at 

a bounded surface in space. This introduces an error of 0(1/R in the 

computations, where R 

This error should be balanced with other discretization errors appearing 

in the computations. This can be accomplished by choosing R to be 

sufficiently large. 

2 

is the distance at which the condition is imposed. 

The E66ect 06 Apptoxhate R a U o n  CondLtlom on Uniquenua 

The radiation condition (1.8) renders unique the solution of the 

Helmholtz equation (1.7) in exterior domains [9,10]. If the radiation 



c 

condi t ion  is appl ied a t  a f i n i t e  d i s tance ,  t h e  s o l u t i o n  of equat ion (1.7) 

reamins unique. This  can be i l l u s t r a t e d  by t h e  following simple example 

. 

( A l .  6 )  

The s o l u t i o n  of t he  d i f f e r e n t i a l  equation and t h e  f i r s t  boundary condi t ion  

is  given by 

@ = a s in(kx)  (Al. 7 )  

where a i s  a constant .  Then applying t h e  " r ad ia t ion  condition" a t  

x = 1- r e s u l t s  .in 

ak exp{ik) = 0 (Al. 8) 

which is  s a t i s f i e d  only i f  a or  k vanish.  I n  e i t h e r  case, t h e  so lu t ion  

(A1.7) is t h e  t r i v i a l  so lu t ion .  Therefore the  so lu t ion  of an inhomogeneous 

vers ion  of t he  problem (A1.6) w i l l  be  unique. 

Problems similar t o  (Al.6) can be produced f o r  two and th ree  dimensions. 

For ins tance ,  for n = 3 consider 

@ ( l j  = 0 (Al. 9) 
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Instead of equation (A1.8) we are led to 

1 a k explik ( R - l ) ]  - - R sin[k(R-l)] = 0 

which for R > 1 and k real implies that a = 0. Therefore the solution 

of (Al.9) vanishes. 

Consistent numerical approximation of the Helmholtz equation with the 

radiation condition imposed at a finite boundary will also be unique. 

illustrate this, let us consider a central difference approximation to the 

problem (A1.61, i.e. 

To 

where h = 1/J and 4 approximates $(jh). The solution of the first two 

equations in (A1.lO) is given by 
j 

= 6 sin(j k h). 
'j 

Substitution into the third equation in (A1.10) yields 

(Al.ll) 

For h sufficiently small this implies that k or vanish SO that the 

solution (Al.ll) also vanishes. Then solution of inhomogeneous Versions of 

problem (A1.lO) will be unique. 
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i 

ii 

iii 

iv 

V 

vi 

vii 

viii 

ix 

ESR B MO M1 C 

5 1 2 

5 1 2 

5 i 2 

5 i 2 

5 i 8 

5 l + i  8 

15 1 8 

15 i 8 

15 l + i  8 

8 

16 

8 

16 

16 

16 

16 

16 

16 

.765 

.761 

2.127 

2.158 

.739 

.764 

.787 

.737 

.801 

Table 1: Multigrid computations for problem (4.4). 
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ESR 
C MO M1 

1 

3 

5 

5 

12 

12 

16 

16 

16 

16 

16 

16 

,664 

.608 

.526 

,546 

.693 

.721 

Table 2: Multigrid computation for problem (4.6) .' 
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